The Barad lab specializes in cellular cryo-electron tomography (CryoET), a microscopy technique that captures pristine three-dimensional snapshots of the cellular environment at unprecedented resolution without the need for chemical fixation or labeling, revealing membranes, filaments, and protein complexes in their native state. CryoET has the potential to connect protein structural biology with sub-cellular localization and morphology within a single experiment; we develop computational tools to connect and contextualize these different scales of biological organization. We use cryoET and these new computational tools to understand how mammalian cells remodel themselves in response to intracellular bacterial infection. Bacteria are masterful manipulators of mammalian cells, and by learning how bacterial effector proteins drive large scale cellular reorganization, we aim to reveal the underlying regulatory mechanisms for cellular architecture.